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Abstract. In this paper a general fourth-order ordinary differential equation is derived for a class of functions
including the time-domain Green function of linearized free-surface hydrodynamics and all its spatial derivatives.
Among all the applications following from this new result, the acceleration of numerical computations in BEM
solutions of time-domain hydrodynamics was the initial motivation of this work. Two new alternative methods
for the computation of convolution integrals based on the new ODEs are suggested and illustrated by a numerical
example.

Key words: hydrodynamics, free surface, time domain, water waves, Green function, differential equation.

1. Introduction

When implementing numerical methods for solving linear water-wave problems in the time
domain, one is most often led to compute convolution integrals involving the specific Green
function of the problem. This function is the solution of Laplace’s equation in the lower
half space, together with the usual linearized Fourier–Robin condition on the undisturbed
free-surface plane, and is originally given by an integral with an oscillating kernel over an
infinite range (see 2.7). Its evaluation therefore requires heavy numerical computations and,
in time-domain seakeeping codes, the major part of c.p.u. time is spent on these computations
[1, 2].

The first numerical solutions of the water wave radiation problem in the time domain
by boundary element methods (BEM) involving Kelvin singularities appeared in the early
eighties in two dimensions [3, 4], and shortly after in 3D [5, 6, 7, 8, 9, 10]. In this period,
several analytical studies were devoted to the elaboration of alternative formulations of the
Green function that were more suitable for numerical calculation than the original integral
definition. Routines based on these series and asymptotic expansions [11, 12, 13] are still
commonly used for these calculations. A complementary trick was introduced later [14, 15]
to decrease further the computation time of the function. Taking advantage of the fact that
the integral to compute is a function of only two parameters varying in bounded domains
(see 2.9), one evaluated the Green function by a bivariate interpolation in a table which was
(pre)computed once for all and stored in a permanent file. This technique is naturally less
accurate than the previous series expansions, but it allows a substantial cut in the overall
computation time.

Our approach to the problem is rather different and, we believe, innovative. The velocity
potential generated at a field point of the fluid domain by a source of time-varying strength is
given by the convolution product of this strength and the Green function. It can therefore be
considered as the output of a linear process, the input of which is the source intensity, while
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202 A. H. Cĺement

the Green function is the impulse-response function. From this point of view, it is natural in
system theory to seek a differential model of such a system (or ‘process’) in order to replace the
computation of convolution integrals by a simple integration of differential equations. Seeking
the coefficients of a given model of the process is usually referred to as: identification. Once
it has been completed, if the model is sufficiently accurate and the order not too large, the
computational burden may be appreciably reduced. This could be called: asystem approach
to the problem.

Our first attempts which involved constant-coefficient differential equations to identify the
time domain Green function [16, 17] were rather disappointing in terms of system size. The
best models we obtained by this approach featured minimal orders of thirty, or more, and
were nevertheless too inaccurate to be used in the whole parameter range, especially when
both source and field points are close to the free surface. The model structure was obviously
inadequate for this function and, as a result, we switched to variable-coefficient differential
equations. The first results, derived numerically [18], were excellent and suggested that a
fourth-order equation should be sufficient to cover the whole geometrical parameter range.
Such an equation was then derived analytically. It was first published in [19] together with a
numerical example.

A lemma generalizing this equation to all the spatial derivatives of the function is established
in Section 3 of the present paper. In Section 4, initial conditions are derived. The particular
equation for the time-domain Green function is derived and commented on Section 5. Then,
differential equations for the first spatial derivatives of the Green function are obtained in
Section 6. In Section 7, two alternative numerical methods are proposed for the computation
of convolution integrals involving the Green function, and an example to illustrate their
potential efficiency in terms of computing time is given.

2. The transient-hydrodynamics Green function

The usual assumptions of linearized theory of free-surface potential flows are made: the fluid is
inviscid, surface tension is neglected, the flow is irrotational, the pressure is assumed constant
above the free surface. LetQ(x; y; z) denote a field point andQ0(x0; y0; z0) a source point,
both lying in the lower half-space(z 6 0; z0 6 0). Let us consider the flow due to a source of
impulsive unit strength located inQ0. Let us define the origin of the time axis as the instant of
existence of the source.

We will define the time domain Green function of the free-surface hydrodynamics problem
as the solution of the following initial-boundary-value problem

�x;y;zG(x
0; y0; z0; x; y; z; t) = �(jQQ0j)�(t � t0); z 6 0; t > 0; (2.1)

@2G

@t2
(x0; y0; z0; x; y;0;t) +

@G

@z
(x0; y0; z0; x; y;0;t) = 0; t > 0: (2.2)

Condition at infinity

jrx;y;zG(x
0; y0; z0; x; y; z; t)j ! 0;

(
[(x� x0)2 + (y � y0)2]!1

z ! �1

)
; 8t > 0: (2.3)

Initial conditions

G(x0; y0; z0; x; y; z; 0) = 0;
@G

@t
(x0; y0; z0; x; y; z; 0) = 0; z 6 0: (2.4)
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Green function of time-domain free-surface hydrodynamics203

Equation (2.2) is the free surface condition, linearized at first order with respect to the wave
steepness which is assumed to vanish. All the variables have been non-dimensionalized by
proper length and time scales.

The solution of this initial-boundary-value problem, initially derived by Haskind [20] and
Brard [21], was further generalized by Finkelstein [22] who also treated the finite-water-
depth case, and gave complete formulations of the 2D solutions (see also Wehausen and
Laitone [23]). In the present 3D infinite-water-depth case, the solution of (2.1–4) reads

G(x0; y0; z0; x; y; z; t)

= � 1
4�
f�(t)G0(x

0; y0; z0; x; y; z) +H(t)F (x0; y0; z0; x; y; z; t)g (2.5)

with

G0(x
0; y0; z0; x; y; z) =

�
1
R
� 1
R1

�
(2.6)

and

F (r; Z; t) = 2
Z
1

0
J0(Kr)eKZ

p
K sin[

p
Kt]dK; (2.7)

where� is the Dirac impulse,H the Heaviside step function, andJ0 a Bessel function of the
first kind of order 0. Due to the form of (2.5) with regard to the time variable,G0 is often
referred to as the instantaneous or impulsive part of the Green function, whileF is called the
memory part. In the present paper our attention will be focused on this later part and, for the
sake of brevity, it will be mostly referred to as theGreen functionin the sequel. The new space
variables in (2.6) and (2.7) are defined by

r =
q
(x� x0)2 + (y � y0)2; R =

q
r2 + (z � z0)2;

Z = z + z0; R1 =
p
r2 + Z2:

By a simple change of variable(KR1 ! �) in (2.7), Jami [5] showed that the memory part
of the Green function can be expressed as a function of two real variables(�; �)

F (r; Z; t) = 2R�3=2
1

~F (�; �) (2.8)

with

~F (�; �) =

Z
1

0
J0(�

q
1� �2)e���

p
� sin(

p
� �)d�; (2.9)

where� = �Z=R1 and � = t=
p
R1. Because� is simply the cosine of the angle� (see

Figure 1), it will lie in the bounded domain: 06 � 6 1, with� = 0 when (and only when) the
two pointsQ andQ0 lie on the free surface (i.e. z = z0 = 0), and� = 1 when the two points
belong to the same vertical axis (i.e.r = 0).
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Figure 1. Definition sketch. Figure 2. The Green function in its natural variables
(�; � ).

We shall denote� and� as thenaturalvariables of the Green function, and(r; Z; t) as the
initial ones. The variable� depends only on the relative position of the two points, while�
is the time-related variable. The ordinary differential equation we are seeking will be derived
for ~F with respect to the natural variable� ; then we shall return to the Green functionF
expressed in terms of its initial variables.

The function ~F (�; �) is plotted on Figure 2 in the domain:[0 6 � 6 1;0 6 � 6 15].
We notice the amplification of the oscillatory behaviour as� approaches 0. In this limit, the
function can be expressed as a combination of products of Bessel functions [23, pp. 608–609].

~F (0; �) =
��

2
p

2

"
J1=4

 
�2

8

!
J
�1=4

 
�2

8

!
+ J3=4

 
�2

8

!
J
�3=4

 
�2

8

!#
�2

8
; (2.10)

from which the limit for� !1may be shown to oscillate between secular bounds

� �p
2
6 ~F (0; � !1) 6

�p
2
: (2.11)

The upper bound is plotted as a black straight line in Figure 2. This singular behavour of
the Green function is observed when� is strictly zero, which occurs only when both source
and field points are on the free surface (see Figure 1). Otherwise, considering for instance the
series expansion of the Green function [13], we can see that the convergence for� ! 1 is
ensured for all� > 0 owing to a factor exp(���2=4).

The locus of~F (�; �) = 0 in the(�; �) plane is also plotted in Figure 2 in order to show
that the number of zeros of~F remains finite for all strictly positive values of�. The function
is thus said to be non-oscillatory. The first time derivative, which represents the dynamic
pressure in the fluid due to the impulsive source, has obviously the same behaviour, and the
non-oscillatory decay of the free motion of a floating body in response to an initial velocity
or displacement [24] probably results from this remarkable property.

At the other bound� = 1, the Bessel function disappears from the kernel of the integral
in (2.9), and the Green function may be directly expressed as an Hermite polynomial, or by
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special functions like parabolic cylinder or confluent hypergeometric functions. Choosing this
last form we get

~F (1; �) = � exp

 
��

2

4

!
M

 
�1

2;
3
2;
�2

4

!
: (2.12)

From this expression, we may derive a very simple second-orderordinary differential equation,
using the general confluent equation [see (5.3)]. In the general case (i.e. when 06 � < 1),
the differential equation will not be of second order, but of fourth order. It will be derived in
Section 5 as a particular case of the lemma established in the next section.

3. A general differential equation

In this section, a general differential equation is derived from which particular equations will
be obtained for both the Green function and its spatial derivatives.

LEMMA Letv andl be two real parameters,� and� two real variables with0 < � 6 1. The
functionAv;l(�; �) defined by

Av;l(�; �) =

Z
1

0
�l e���Jv(�

q
1� �2) sin(

p
� �)d� (3.1)

is a solution of the differential equation

@4Av;l

@�4 + ��
@3Av;l

@�3 +

 
�2

4
+ �(3+ 2l)

!
@2Av;l

@�2

+(l + 5
4)�

@Av;l

@�
+ ((l + 1)2 � v2)Av;l = 0: (3.2)

Proof. Let us first express the second and fourth derivatives ofAv;l(�; �) with respect to�

@2Av;l

@�2 (�; �) = �
Z
1

0
�l+1 e���Jv(�

q
1� �2) sin(

p
� �)d�;

@4Av;l

@�4 (�; �) =

Z
1

0
�l+2 e���Jv(�

q
1� �2) sin(

p
� �)d�:

A first change of variable:p = ��2 is performed, yielding

Av;l(�; �) =
1

�2(l+1)

Z
1

0
e�p(�=�

2
)Jv

 
p

p
1� �2

�2

!
pl sin(

p
p)dp; (3.3a)

@2Av;l

@�2 (�; �) = � 1
�2(l+2)

Z
1

0
e�p(�=�

2
)Jv

 
p

p
1� �2

�2

!
pl+1 sin(

p
p)dp; (3.3b)

@4Av;l

@�4 (�; �) =
1

�2(l+3)

Z
1

0
e�p(�=�

2
)Jv

 
p

p
1� �2

�2

!
pl+2 sin(

p
p)dp: (3.3c)
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206 A. H. Cĺement

Introduction of the new variableu = 1=�2 in (3.3a) leads to

Av;l(�; �) =

Z
1

0
ul+1 e�pu�Jv(pu

q
1� �2)pl sin(

p
p)dp: (3.4)

Making use of the relation [25, 9.1.69 pp. 362], we can express the Bessel function in terms
of the confluent hypergeometric functionM (or Kummer’sfunction, also referred to as� or
1F1)

Jv(z) =
(1=2z)v e�iz

�(v + 1)
M(v + 1

2;2v + 1;2iz); (3.5)

for v 6= �1;�2, where the Gamma function is singular. For these negative integer values of
v, we may use the classical relationJ

�n(x) = (�1)nJn(x) [30 pp. 15] before continuing the
derivation.

Introducing the notation

�(�; v) =
(1� �2)v=2

2v�(v + 1)
; (3.6)

for the coefficient function, we have now, from (3.4), (3.5) and (3.6)

Av;l = �(�; v)

Z
1

0
Hv;l(p; �; u)p

l+v sin(
p
p)dp; (3.7a)

��2@
2Av;l

@�2 = �(�; v)

Z
1

0
Hv;l(p; �; u)p

1+l+v sin(
p
p)dp; (3.7b)

�4@
4Av;l

@�4 = �(�; v)

Z
1

0
Hv;l(p; �; u)p

2+l+v sin(
p
p)dp; (3.7c)

where

Hv;l(p; �; u) = u1+l+v e�up(�+i
p

1��2)M(v + 1
2;2v + 1;2iup

q
1� �2): (3.8)

Let us define some auxiliary functions and parameters8>>><
>>>:
A = �(1+ l + v); a = v + 1

2; b = 2v + 1 = 2a;

f(u) = up(�+ i
p

1� �2); _f(u) = p(�+ i
p

1� �2); �f(u) = 0;

h(u) = 2iup
p

1� �2; _h(u) = 2ip
p

1� �2; �h(u) = 0:

(3.9)

Equation (3.8) may now be written in the simpler form

Hv;l = u�A e�f(u)M(a; b; h(u)): (3.10)

The functionHv;l defined that way is known to satisfy the general confluent equation
[25, 13.1.35 pp. 505] with respect to the variableu.

�H +

"
2A
u

+ 2 _f +

 
b
_h

h
� _h�

�h

_h

!#
_H

+

" 
b
_h

h
� _h�

�h

_h

!�
A

u
+ _f

�
+
A(A� 1)

u2 +
2A _f

u
+ �f + _f2� a _h2

h

#
H = 0: (3.11)
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Substituting (3.9) in (3.11), we obtain

@2Hv;l

@u2 �
�
(1+ 2l)� 2�up

u

�
@Hv;l

@u

+

 
p2� �p

u
(1+ 2l) +

l2 + (1+ 2l)� v2

u2

!
Hv;l = 0: (3.12)

We can now return to the variable� using

u =
1
�2 ;

@

@u
= �1

2�
3 @

@�
;

@2

@u2 = 3
4�

5 @

@�
+ 1

4�
6 @2

@�2 : (3.13)

In this variable, the differential Equation (3.12) becomes

1
4�

6@
2Hv;l

@�2 + [(l + 5
4)�

5 � �p�3]
@Hv;l

@�

+[p2� �p(1+ 2l)�2 + ((l + 1)2 � v2)�4]Hv;l = 0: (3.14)

Moving the terms involvingp to the right-hand side, we get

1
4�

6@
2Hv;l

@�2 + (l + 5
4)�

5@Hv;l

@�
+ ((l + 1)2 � v2)�4Hv;l

= �p�3@Hv;l

@�
+ �p(1+ 2l)�2Hv;l � p2Hv;l:

This differential equation is valid for all� andp, independent of� . Thus, it still holds after
we multiply each side by�(�; v)pl+v sin

p
p and then integrate from 0 to infinity with respect

to the variablep. Doing so, we note that the original functionAv;l(�; �) appears directly in
the left-hand side

1
4�

6@
2Av;l

@�2 + (l + 5
4)�

5@Av:l

@�
+ ((l + 1)2� v2)�4Av;l

= ��3 @

@�

�
�

Z
1

0
Hv;l

�
p; �;

1
�2

�
p1+l+v sin

p
pdp

�

+(1+ 2l)��2�

Z
1

0
Hv;l

�
p; �;

1
�2

�
p1+l+v sin

p
pdp

��
Z
1

0
Hv;l

�
p; �;

1
�2

�
p2+l+v sin

p
pdp: (3.15)

The right-hand-side integrals were defined in (3.7) as the second and fourth derivatives of
Av;l(�; �); then we have

1
4�

6@
2Av;l

@�2 + (l + 5
4)�

5@Av;l

@�
+ ((l + 1)2� v2)�4Av;l

= ��3 @

@�

"
��2@

2Av;l

@�2

#
+ (1+ 2l)��2

"
��2@

2Av;l

@�2

#
�
"
�4@

4Av;l

@�4

#
; (3.16)
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from which the final result is derived

A
(4)
v;l + ��A

(3)
v;l + (1

4�
2 + �(3+ 2l))A(2)

v;l + (l + 5
4)�A

(1)
v;l + ((l + 1)2 � v2)Av;l = 0; (3.17)

with the notation

A
(n)
v;l =

@nAv;l

@�n
:

LIMIT CASE � = 0

The above derivation remains valid as long as the integral (3.1) and its time derivatives exist,
which is ensured when� is strictly positive. The existence of these integrals when� = 0 will
be proved now, in the special casesl = �1

2 + p; v = q, with p andq being two non-negative
integers.

Let us define the auxiliary functionKp;q(R; �) by

Kp;q(R; �) =

Z
1

0
��(1=2)+pJq(�R) sin(

p
� �)d�; (3.18)

whereR is a positive real variable. The functionsA andK are then linked by the relation

Av;l(0; �) = Kp;q(1; �): (3.19)

Forp = q = 0, the integralK0;0(R; �) exists and is explicitly given in [26, pp. 609] by

K0;0(R; �) =
�2
p
R

�

2R
J1=4

 
�2

8R

!
J
�(1=4)

 
�2

8R

!
: (3.20)

Differentiating (3.18) twice with respect to� , we obtain

@2Kp;q

@�2 (R; �) = �Kp+1;q(R; �): (3.21)

Thus, we can derive the integralsA0;�(1=2)+p(0; �) simply by applying (3.21) to (3.18) and
expressing the result atR = 1.

For the second indexq, the recursion is provided by the well-known formulas for the
derivatives of the Bessel function [30, pp. 45] which give in our notations

q

R
Kp;q(R; �)� @

@R
Kp;q(R; �) = Kp+1;q+1(R; �): (3.22)

Finally, all the integralsAq;�(1=2)+p(0; �) are finite and can be derived from (3.19) and (3.20)
by simple recursive calculations. This allows us to extend the range of applicability of the
lemma to the cases� = 0, whenl = �1

2 + p; v = q. Fortunately, the time-domain Green
function which will be addressed in a later section, falls into this category.
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4. Initial conditions

The integration of (3.17) requires the first four derivatives ofAv;l(�; �) as initial conditions.
These derivatives may be derived directly by substitution of� = 0 in the initial form (3.1) of
the function,i.e.

A
(2k)
v;l (�;0) = 0; A

(2k+1)
v;l (�;0) = (�1)k

Z
1

0
�l+(2k+1)=2 e���Jv(

q
1� �2)d�;

k = 0;1; : : : : (4.1)

All even derivatives, including the function itself, are zero at the origin. In the above expression
of the odd derivatives, we can identify the integral formulation of the associated Legendre
function of the first kind of degree� and order�v which satisfy [26, 6.624.6 pp. 734]Z

1

0
�� e���Jv(�

q
1� �2)d� = �(� + v + 1)P�v� (�) (4.2)

provided

0 < � 6 1; <e(� + v) > �1;

hence

A
(2k)
v;l (�;0) = 0; A

(2k+1)
v;l (�;0) = (�1)k�

�
l +

2k + 3
2

+ v

�
P�v
l+k+1=2(�);

k = 0;1; : : : :

FUNCTION OF INTEGER ORDER AND INTEGER DEGREE

The applications of (3.17) and (4.4) we are presently dealing with involve only associated
Legendre functions of integer orderv and integer degree�. Whenv is a positive integer, we
can return to an associated Legendre function of positive order, using [26, 8.752.2 pp. 1025]

�(� + v + 1)P�v� (�) = (�1)v�(� � v + 1)P v
� (�): (4.3)

Hence, in that case, the general form of the derivatives ofAv;l(�; �) at � = 0 is

A
(2k)
v;l (�;0) = 0; A

(2k+1)
v;l (�;0) = (�1)k+v�

�
l +

2k + 3
2

� v

�
P v
l+k+1=2(�);

k = 0;1; : : : ; (4.4)

with

0 < � 6 1; <e(l + k + v) > �3
2:

We can furthermore express these functions in terms of thevth derivatives of Legendre
polynomials of degree�; P�(�), using [26, 8.752.1 pp. 1025]

P v
� (�) = (�1)v(1� �2)v=2 dv

d�v
P�(�): (4.5)
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Also, the� function of integer argument becoming a factorial by

�

�
l +

2k + 3
2

� v

�
=

�
l +

2k + 1
2

� v

�
!

we finally get

A
(2k)
v;l (�;0) = 0;

A
(2k+1)
v;l (�;0) = (�1)k

�
l +

2k + 1
2

� v

�
!(1� �2)v=2 dv

d�v
Pl+k+1=2(�);

k = 0;1; : : : : (4.6)

5. An ODE for the Green function

The Green function~F can now be expressed simply, from (3.1) and (2.9), asA0;1=2(�; �).
Then, substituting these valuesv = 0; l = 1

2 of the parameters in (3.17) and (4.6), we get
straightforwardly the following fourth-order differential equation for the Green function~F in
the couple of natural variables(�; �).

~F (4) + �� ~F (3) + (1
4�

2 + 4�) ~F (2) + 7
4�

~F (1) + 9
4
~F = 0; (5.1)

with the initial conditions

~F (2k)(�;0) = 0; ~F (2k+1)(�;0) = (�1)k(k + 1)!Pk+1(�); k = 0;1; : : : : (5.2)

The coefficients in (5.2) which come from (4.6) could also have been derived directly from the
expansion of the Green function into a series of Legendre polynomials given by Newman [11].

Having derived such a simple and compact equation we proceeded by checking its validity
against some related analytical results and numerical algorithms. At the bound� = 0 we
could easily show that the analytical expression (2.10) of the Green function satisfies (5.1) by
using the symbolic computation software MAPLE V.4.

At the opposite bound� = 1, the function ~F (1; �) satisfies a second-order differential
equation, which can be easily derived from (2.12) and the general confluent Equation (3.11).
Introducing a differential operatorL, we may express this ODE as

L( ~F (1; �)) =
 

2
@2

@�2 + �
@

@�
+ 3

!
( ~F (1; �)) = 0: (5.3)

For this particular value of�, it is noteworthy to observe that the fourth-order ODE (5.1) may
be straightforwardly recovered by a simply ‘squaring’ of the operatorL

L[L( ~F (1; �))] = 0 = 4 ~F (4) + 4� ~F (3) + (�2 + 16) ~F (2) + 7� ~F (1) + 9 ~F : (5.4)

For intermediate values of the geometrical parameter� in the range [0, 1], we did a numerical
check by comparing the results obtained using either (5.1) or our standard Green-function
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routine based on series expansions. The first one being exact and the second an approxima-
tion, the excellent agreement we observed was simply a confirmation of the validity of the
expansion, and of the accuracy of its computer implementation.

Returning to the initial variable set(r; Z; t) from (5.1) through (2.8), we get the announced
differential equation forF in a more useful form

(r2 + Z2)F (4) � ZtF (3) + (1
4t

2 � 4Z)F (2) + 7
4tF

(1) + 9
4F = 0: (5.5)

The derivation of this equation in Section 3, from the remarkable property of confluent
hypergeometric functions to satisfy (3.11), was rather indirect. Once it was established, we
returned to the initial-boundary-value problem (2.1)–(2.4) and sought a more direct derivation
of the ODE from the initial equations of the problem. Unfortunately, so far these attempts
have remained unsuccessful.

The Green functionF may be regarded as the impulse response of a system with the source
strength as an input and the velocity potential as an output. In literature of system theory, the
derivatives of the impulse-response function at the origin of time are often referred to as the
Markov parameters [27]. In the present case, these parameters of the Green-function process
are all known from (5.2), up to an infinite order. This would give us potentially a deep insight
into the dynamics of the system. At the moment, let us focus on the first four which provide
us with the initial conditions necessary for the solution, or simulation of (5.5).

F (r; Z; 0) = 0;
@F

@t
(r; Z; 0) = 2

�

R2
1
= �2

Z

(r2 + Z2)3=2
;

@2F

@t2
(r; Z : 0) = 0;

@3F

@t3
(r; Z; 0) = 2

�3�2 + 1

R3
1

= 2
r2� 2Z2

(r2 + Z2)5=2
:

(5.6)

It may be helpful to write the fourth-order ODE (5.5) as a system of first-order equations.
Keeping the superscript notation for the successive time derivatives, we shall write

Y(1) = [A]Y; (5.7)

with Y = [F; F (1); F (2); F (3)]T , and[A] the so-called companion matrix

[A] =

2
66664

0 1 0 0

0 0 1 0

0 0 0 1

�(9=4R2
1) �(7t=4R2

1) (16Z � t2)=4R2
1 Zt=R2

1

3
77775 : (5.8)

It is interesting to note that the determinant of[A] is time independent, and never vanishes,
even when� = 0; it is thus always finite, except whenQ andQ0 coincide. Hence, the matrix
will remain nonsingular and invertible, irrespective of the values of the variables.

Let fF1(r; Z; t); F2(r; Z; t); F3(r; Z; t); F4(r; Z; t)g be the set of the four fundamental

solutions of (5.5) satisfying unitary initial conditionsF (i)
j (r; Z; 0) = �i(j�1) with i =

0; : : : ;3;j = 1; : : : ;4. Any solution of the ODE may be recovered as a linear combina-
tion of these basis functions which are plotted in Figure 3 in the natural variables(�; �). Being
a solution of (5.5), the Green function can be expressed on this basis from (5.6) and we have
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Figure 3. The fundamental solutions of the fourth order Green function ODE in their natural variables(�; � ).

F (r; Z; t) = �2
Z

(r2 + Z2)3=2
F2(r; Z; t) + 2

r2� 2Z2

(r2 + Z2)5=2
F4(r; Z; t): (5.9)

The WronskianW (t) of the system (5.7) may be computed as the determinant of the state
transition matrix [28]

W (t) = det

�������������

F1 F2 F3 F4

F
(1)
1 F

(1)
2 F

(1)
3 F

(1)
4

F
(2)
1 F

(2)
2 F

(2)
3 F

(2)
4

F
(3)
1 F

(3)
2 F

(3)
3 F

(3)
4

�������������
: (5.10)

From the definition of the fundamental solutions we haveW (0) = 1, and by Liouville’s
theorem [29]

W (t) =W (0)exp
�Z t

0
[Z�=R2

1]d�
�
= exp(Zt2=2R2

1): (5.11)

BecauseZ is strictly negative when the source and the field points do not lie together on
the free surface, the volume spanned by the solution of (5.7) in the four-dimensional space
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generated by the fundamental solutions will contract. In the limiting caseZ = 0 it will not,
as illustrated by the behaviour of the Green function for� = 0 (Figure 1).

6. ODEs for the gradient of the Green function

The solution of time-domain hydrodynamics problem by direct BEM method also involves the
gradient of the Green function. Differential equations of the same kind are therefore needed
for @F=@r and@F=@Z also.

Horizontal gradient

From (2.7) and the differentiation rule of the Bessel function we have

Fr(r; Z; t) = �2R�(5=2)
1 K(�; �); (6.1)

with

K(�; �) =

Z
1

0
�3=2 e���J1(�

q
1� �2) sin(

p
� �)d� = A1;3=2(�; �): (6.2)

Hence, the following fourth-order differential equation follows directly from the general
lemma established in Section 3, withv = 1 andl = 3

2

K(4) + ��K(3) + (1
4�

2 + 6�)K(2) + 11
4 �K

(1) + 21
4 K = 0 (6.3)

and from (4.6) the initial conditions

K(2k)(�;0) = 0;

K(2k+1)(�;0) = (�1)k(k + 1)!
p

1� �2 d
d�

Pk+2(�); k = 0;1; : : : :
(6.4)

From these expressions and (6.1) we show that the horizontal gradient of the Green function
satisfies, in the initial-variables set

(r2 + Z2)
@4Fr

@t4
� Zt

@3Fr

@t3
+ (1

4t
2� 6Z)

@2Fr

@t2
+ 11

4 t
@Fr

@t
+ 21

4 Fr = 0; (6.5)

with the initial conditions, up to the third order

Fr(r; Z; 0) = 0;
@Fr

@t
(r; Z; 0) = �6�

p
1� �2

R3
1

=
6rZ

(r2 + Z2)5=2
;

@2Fr

@t2
(r; Z; 0) = 0;

@3Fr

@t3
(r; Z; 0) = (30�2� 6)

p
1� �2

R4
1

=
6r(4Z2� r2)

(r2 + Z2)7=2
:

(6.6)

Comparing (3.1) and (2.9), it is easy for us to realize that all higher derivatives of the Green
function can be expressed as particular functionAv;l(�; �), and that we could likewise derive
a similar fourth-order differential equation for each of them by following the same steps.
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Vertical gradient

The same derivation could be applied to the vertical derivative. Nevertheless, a shortcut is
available, from (2.7), if we remark that

@F

@Z
= �@

2F

@t2
; (6.7)

which is nothing but the free-surface condition extended to the whole lower half-space(Z 6 0).
Hence, differentiating (5.5), twice, we directly obtain the result

(r2 + Z2)
@4FZ

@t4
� Zt

@3FZ

@t3
+ (1

4t
2� 6Z)

@2FZ

@t2
+ 11

4 t
@FZ

@t
+ 25

4 FZ = 0 (6.8)

and, from (4.6), the initial conditions

FZ(r; Z; 0) = 0;
@FZ

@t
(r; Z; 0) = 2

3�2� 1
R3

1
=

4Z2� 2r2

(r2 + Z2)5=2
;

@2FZ

@t2
(r; Z; 0) = 0;

@3FZ

@t3
(r; Z; 0) = 2

�15�3 + 9�
R4

1
=
�6Z(3r2� 2Z2)

(r2 + Z2)7=2
:

(6.9)

The similarity between the ODEs (6.5) and (6.8) for the two components of the gradient is
remarkable. They differ only by the coefficient of the lowest order term which is21

4 for the
former and25

4 for the latter.

7. Numerical applications of the Green-function ODE

The ODEs derived in the preceeding sections will be useful to accelerate the computation
of convolution integrals involving the Green function or its derivatives; this was the primary
motivation of the present study. In the BEM solution of time-domain hydrodynamics boundary-
integral problems, the velocity potential (and/or its spatial gradient) induced at a field pointQ
by, say, a source of given strengthq(t) atQ0 must be evaluated a very large number of times
(� O(108)). Let us denote byS(t) the memory part of this potential

S(t) =

Z t

0
q(t0)F (r; Z; (t � t0))dt0: (7.1)

As mentioned in Section 1, the computation of these convolution integrals in time-domain
seakeeping codes constitutes the major part of the total numerical cost, due to the difficulties
encountered in the evaluation of the kernel. Routines based on series expansions of (2.9)
[11, 12, 13] are usually used; they are sometimes accelerated by the tabulation of the function
~F (�; �) [14, 15]. The ability of these routines to deliver the value of the function whatever
the time ordering in the calling sequence is not used in the applications considered herein. On
the contrary, because these problems are solved by means of time-stepping procedures from
initial conditions to the current timet, we always need to calculate the kernel sequentially
with respect to the time variable, and never at random. This permits us to update the Green
function in the integral kernel of convolution products by simply integrating the differential
Equation (5.5) (or (6.3), (6.8); : : : ; for the derivatives), rather than computing it via series
expansions or interpolation in the standard routines.
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A few numerical tests of this new method have been performed on single integrals like (7.1)
for different relative positions ofQ andQ0 and sinusöıdal inputq(t), and important reductions
in computing time were observed. In these very first tests, however, the series-expansion
routine was not fully optimized, and the ODE was integrated by a standard fourth-order
Runge–Kutta procedure without any refinement or close checking of final accuracy. Then, we
do not have currently enough elements to give a precise measure of the acceleration brought
about by the present method to the sequential estimation of the Green function. A complete
study of stability, accuracy versus time step and method order; : : : ; is in progress, and the
results of these numerical investigations will appear in a forthcoming paper.

Another computational method based on the present differential equations was also con-
sidered. If the coefficients of the ODE were all constant with respect to time, a differential
equation linking the outputS(t) to the inputq(t) of (7.1) could easily be derived from the
knowledge of the differential Equation (5.5) for the impulse response, its derivatives at the
origin (5.6), and the input initial conditions [seee.g. 27]. With such an equation, the output
could be computed directly as a linear process simulation without any further computation of
integrals such as (7.1).

Unfortunately, when the coefficients of the primary ODE are time varying like here, the
relation betweenq(t) andS(t) isa priori an integro-differential equation featuring convolution
integrals among the forcing terms. However, using expansions of the kernels, we can reduce
it to a purely differential system, but of infinite dimension. If the dynamical information is
concentrated in the lower-order terms, a finite-range sub-system can be defined by truncation,
and used for the numerical simulation of the system as explained above. In those cases,
since no further evaluations of the kernel are needed, the computation of the output may be
considerably faster, depending obviously on the sub-system order. Futhermore, the differential
equation being of short-memory form and the convolution integral of long-memory form, a
large amount of computer-memory storage could also be saved.

A first attempt at using this second approach for the computation of (7.1) was presented in
[19]. The proposed model had the form

4X
i=0

0
@ 2X

j=0

bijt
j

1
AS(i)(t) =

3X
i=0

0
@ JX

j=0

cijt
j

1
A q(i)(t): (7.2)

The autoregressive terms on the left-hand side arose directly from (5.5). The right-hand-side
order is imposed by the causality of the system [28, pp. 158]. The unknown coefficients of
the forcing terms were obtained by subsitution of the successive time derivatives of (7.1) in
(7.2). The resulting equation was then expressed att = 0 in terms of the Markov parameters
(5.2), (5.6). As explained above, this process leads to infinite-order polynomials, and must be
terminated arbitrarily somewhere. With polynomials on the right-hand side of (7.2) truncated
to degree one only, the numerical results were sometimes excellent and generally encouraging
for a certain class of input (i.e. sinus function, high frequency). In Figure 4, the output of this
t1 model is compared to the output obtained by the classical approach (convolution integral
by trapezoidal rule) for an input equal to sin(6t).

The same model, on the contrary, gave rather poor results, even divergent simulations, for
low-frequency input. We derived higher-degree polynomials using a symbolic computation
software; they did not noticeably improve the bandwidth of the method, and they seem less
stable for long-term simulations. This inadequacy is probably caused by the fact that the
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Figure 4. System outputS(t) computed by both methods.M 0(0; 0;�1);M(5; 0;�1) � [� = 0�3714; R1 =
5�3851; �t = 0�05].

method used to derive these low-degree models was purely algebraic and did not take the
dynamics of the system into account.

We were nevertheless encouraged to pursue our investigations in that direction by results
such as those plotted in Figure 4. So we will carry on with this study, but using now more
elaborate models and identification methods.

8. Conclusion

A fourth-order ordinary differential equation and the corresponding initial conditions were
derived for a class of functions including the Green function of time-domain hydrodynamics
and all its spatial derivatives. The solution of linear problems for time-domain hydrodynamics
requires the computation of convolution integrals involving this function. These computations
represents the most c.p.u.-time-consuming part of the computer codes for solving linearized
time-domain seakeeping problems by BEM. As a first application of our ODEs, an alter-
native method for the in-line evaluation of the Green function during the computation of
the convolution integrals was proposed. Encouraging results have been obtained during pre-
liminary numerical tests on single integrals. We are now implementing this method in an
existing 3D BEM solver in order to measure the benefit we could expect in real engineering
applications.

A further improvement based on a complete input-output differential model was also
considered. Promising preliminary results were obtained for high-frequency input, but the
bandwidth of the method, with the current form of the model, does not fit the whole useful
range for the envisaged application. We are still developing this second alternative method for
the computation of the convolution integrals related to time-domain hydrodynamics.

Furthermore, many theoretical and practical applications arising from the ODEs derived
herein may be anticipated. We are particularly interested in their extension to the finite-water-
depth problem for which only few formulations of the Green function, difficult to handle
numerically, are available up to now. These theoretical developments have our continued
attention.
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